#include #include #include #include #include #include #include #include #include #include #define nil NULL #define exits(s) exit(-1) typedef struct Ann Ann; typedef struct Layer Layer; typedef struct Neuron Neuron; typedef struct Weights Weights; struct Ann { int n; double rate; Layer **layers; Weights **weights; Weights **deltas; void *user; void *internal; }; struct Layer { int n; Neuron **neurons; }; struct Neuron { double (*activation)(Neuron*); double (*gradient)(Neuron*); double steepness; double value; double sum; void *user; void *internal; }; struct Weights { int inputs; int outputs; double **values; }; double activation_sigmoid(Neuron*); double gradient_sigmoid(Neuron*); double activation_tanh(Neuron*); double gradient_tanh(Neuron*); double activation_leaky_relu(Neuron*); double gradient_leaky_relu(Neuron*); double activation_piece(Neuron*); double gradient_piece(Neuron*); #define ACTIVATION activation_leaky_relu #define GRADIENT gradient_leaky_relu Ann *anncreate(int, ...); Ann *anncreatev(int, int*); Layer *layercreate(int, double(*)(Neuron*), double(*)(Neuron*)); Neuron *neuroninit(Neuron*, double (*)(Neuron*), double (*)(Neuron*), double); Neuron *neuroncreate(double (*)(Neuron*), double (*)(Neuron*), double); Weights *weightsinitrand(Weights*); Weights *weightsinitrandscale(Weights*, double); Weights *weightsinitdouble(Weights*, double); Weights *weightsinitdoubles(Weights*, double*); Weights *weightscreate(int, int, int); double *annrun(Ann*, double*); double anntrain(Ann*, double*, double*); typedef struct Adam Adam; struct Adam { double rate; double beta1; double beta2; Weights **first; Weights **second; double epsilon; int timestep; }; double anntrain_adam(Ann*, double*, double*); double anntrain_adamax(Ann*, double*, double*); double activation_sigmoid(Neuron *in) { return 1.0/(1.0+exp(-in->sum)); } double gradient_sigmoid(Neuron *in) { double y = in->value; return y * (1.0 - y); } double activation_tanh(Neuron *in) { return tanh(in->sum); } double gradient_tanh(Neuron *in) { return 1.0 - in->value*in->value; } double activation_leaky_relu(Neuron *in) { if (in->sum > 0) return in->sum; return in->sum * 0.01; } double gradient_leaky_relu(Neuron *in) { if (in->sum > 0) return 1.0; return 0.01; } double activation_piece(Neuron *in) { if (in->sum < 0.0) return 0.0; else if (in->sum > 1.0) return 1.0; else return in->sum; } double gradient_piece(Neuron *in) { return 1.0; } Weights* weightsinitdoubles(Weights *in, double *init) { int i, o; for (i = 0; i <= in->inputs; i++) for (o = 0; o < in->outputs; o++) in->values[i][o] = init[o]; return in; } Weights* weightsinitdouble(Weights *in, double init) { int i, o; for (i = 0; i <= in->inputs; i++) for (o = 0; o < in->outputs; o++) in->values[i][o] = init; return in; } Weights* weightsinitrandscale(Weights *in, double scale) { int i, o; srand(time(0)); for (i = 0; i <= in->inputs; i++) for (o = 0; o < in->outputs; o++) in->values[i][o] = (((double)rand()/RAND_MAX) - 0.5) * scale; return in; } Weights* weightsinitrand(Weights *in) { weightsinitrandscale(in, 2.0); return in; } Neuron* neuroninit(Neuron *in, double (*activation)(Neuron*), double (*gradient)(Neuron*), double steepness) { in->activation = activation; in->gradient = gradient; in->steepness = steepness; in->value = 1.0; in->sum = 0; return in; } Neuron* neuroncreate(double (*activation)(Neuron*), double (*gradient)(Neuron*), double steepness) { Neuron *ret = calloc(1, sizeof(Neuron)); neuroninit(ret, activation, gradient, steepness); return ret; } Layer* layercreate(int num_neurons, double(*activation)(Neuron*), double(*gradient)(Neuron*)) { Layer *ret = calloc(1, sizeof(Layer)); int i; ret->n = num_neurons; ret->neurons = calloc(num_neurons+1, sizeof(Neuron*)); for (i = 0; i <= ret->n; i++) { ret->neurons[i] = neuroncreate(activation, gradient, 1.0); } return ret; } Weights* weightscreate(int inputs, int outputs, int initialize) { int i; Weights *ret = calloc(1, sizeof(Weights)); ret->inputs = inputs; ret->outputs = outputs; ret->values = calloc(inputs+1, sizeof(double*)); for (i = 0; i <= inputs; i++) ret->values[i] = calloc(outputs, sizeof(double)); if (initialize) weightsinitrand(ret); return ret; } Ann* anncreate(int num_layers, ...) { Ann *ret = calloc(1, sizeof(Ann)); va_list args; int arg; int i; va_start(args, num_layers); ret->n = num_layers; ret->rate = 0.7; ret->layers = calloc(num_layers, sizeof(Layer*)); ret->weights = calloc(num_layers-1, sizeof(Weights*)); ret->deltas = calloc(num_layers-1, sizeof(Weights*)); for (i = 0; i < num_layers; i++) { arg = va_arg(args, int); if (arg < 0 || arg > 1000000) arg = 0; ret->layers[i] = layercreate(arg, ACTIVATION, GRADIENT); if (i > 0) { ret->weights[i-1] = weightscreate(ret->layers[i-1]->n, ret->layers[i]->n, 1); ret->deltas[i-1] = weightscreate(ret->layers[i-1]->n, ret->layers[i]->n, 0); } } va_end(args); return ret; } Ann* anncreatev(int num_layers, int *layers) { Ann *ret = calloc(1, sizeof(Ann)); int arg; int i; ret->n = num_layers; ret->rate = 0.7; ret->layers = calloc(num_layers, sizeof(Layer*)); ret->weights = calloc(num_layers-1, sizeof(Weights*)); ret->deltas = calloc(num_layers-1, sizeof(Weights*)); for (i = 0; i < num_layers; i++) { arg = layers[i]; if (arg < 0 || arg > 1000000) arg = 0; if (i < (num_layers-1)) ret->layers[i] = layercreate(arg, ACTIVATION, GRADIENT); else ret->layers[i] = layercreate(arg, activation_sigmoid, gradient_sigmoid); if (i > 0) { ret->weights[i-1] = weightscreate(ret->layers[i-1]->n, ret->layers[i]->n, 1); ret->deltas[i-1] = weightscreate(ret->layers[i-1]->n, ret->layers[i]->n, 0); } } return ret; } double* annrun(Ann *ann, double *input) { int l, i, o; int outputs = ann->layers[ann->n - 1]->n; double *ret = calloc(outputs, sizeof(double)); Neuron *O; double sum; for (i = 0; i < ann->layers[0]->n; i++) ann->layers[0]->neurons[i]->value = input[i]; for (l = 1; l < ann->n; l++) { for (o = 0; o < ann->layers[l]->n; o++) { O = ann->layers[l]->neurons[o]; O->sum = ann->weights[l-1]->values[ann->weights[l-1]->inputs][o]; // bias sum = O->sum; #pragma omp parallel for reduction (+:sum) for (i = 0; i < ann->layers[l-1]->n; i++) sum += ann->layers[l-1]->neurons[i]->value * ann->weights[l-1]->values[i][o]; if (sum < -300.0) sum = -300.0; else if (sum > 300.0) sum = 300.0; O->sum = sum; O->value = O->activation(O); } } for (o = 0; o < outputs; o++) ret[o] = ann->layers[ann->n - 1]->neurons[o]->value; return ret; } double anntrain(Ann *ann, double *inputs, double *outputs) { double *error = annrun(ann, inputs); double ret = 0.0; int noutputs = ann->layers[ann->n-1]->n; double acc, sum; int o, i, w, n; Neuron *O, *I; Weights *W, *D, *D2; for (o = 0; o < noutputs; o++) { // error = outputs[o] - result error[o] -= outputs[o]; error[o] = -error[o]; ret += pow(error[o], 2.0) * 0.5; if (error[o] < -.9999999) error[o] = -17.0; else if (error[o] > .9999999) error[o] = 17.0; else error[o] = log((1.0 + error[o]) / (1.0 - error[o])); } D = ann->deltas[ann->n-2]; weightsinitdoubles(D, error); for (i = 0; i < (ann->n-2); i++) { D = ann->deltas[i]; weightsinitdouble(D, 1.0); } // backpropagate MSE D2 = ann->deltas[ann->n-2]; for (w = ann->n-2; w >= 0; w--) { D = ann->deltas[w]; for (o = 0; o < ann->layers[w+1]->n; o++) { O = ann->layers[w+1]->neurons[o]; acc = O->gradient(O) * O->steepness; sum = 1.0; if (D2 != D) { W = ann->weights[w + 1]; sum = 0.0; #pragma omp parallel for reduction (+:sum) for (n = 0; n < D2->outputs; n++) sum += D2->values[o][n] * W->values[o][n]; } for (i = 0; i <= ann->layers[w]->n; i++) { D->values[i][o] *= acc * sum; } } D2 = D; } // update weights for (w = 0; w < ann->n-1; w++) { W = ann->weights[w]; D = ann->deltas[w]; for (i = 0; i <= W->inputs; i++) { I = ann->layers[w]->neurons[i]; for (o = 0; o < W->outputs; o++) { W->values[i][o] += D->values[i][o] * ann->rate * I->value; } } } free(error); return ret; } Ann* adaminit(Ann *ann) { int i; Adam *I = calloc(1, sizeof(Adam)); I->rate = 0.001; I->beta1 = 0.9; I->beta2 = 0.999; I->epsilon = 10e-8; I->timestep = 0; I->first = calloc(ann->n-1, sizeof(Weights*)); I->second = calloc(ann->n-1, sizeof(Weights*)); for (i = 0; i < (ann->n-1); i++) { I->first[i] = weightscreate(ann->layers[i]->n, ann->layers[i+1]->n, 0); I->second[i] = weightscreate(ann->layers[i]->n, ann->layers[i+1]->n, 0); } ann->internal = I; return ann; } double anntrain_adam(Ann *ann, double *inputs, double *outputs) { double *error = annrun(ann, inputs); double ret = 0.0; int noutputs = ann->layers[ann->n-1]->n; double acc, sum, m, v; int o, i, w, n; Neuron *O, *I; Weights *W, *D, *D2, *M, *V; Adam *annI; if (ann->internal == 0) adaminit(ann); annI = ann->internal; annI->timestep++; for (o = 0; o < noutputs; o++) { // error = outputs[o] - result error[o] -= outputs[o]; error[o] = -error[o]; ret += pow(error[o], 2.0) * 0.5; } D = ann->deltas[ann->n-2]; weightsinitdoubles(D, error); for (i = 0; i < (ann->n-2); i++) { D = ann->deltas[i]; weightsinitdouble(D, 1.0); } // backpropagate MSE D2 = ann->deltas[ann->n-2]; for (w = ann->n-2; w >= 0; w--) { D = ann->deltas[w]; M = annI->first[w]; V = annI->second[w]; for (o = 0; o < ann->layers[w+1]->n; o++) { O = ann->layers[w+1]->neurons[o]; acc = O->gradient(O) * O->steepness; sum = 1.0; if (D2 != D) { W = ann->weights[w+1]; sum = 0.0; #pragma omp parallel for reduction (+:sum) for (n = 0; n < D2->outputs; n++) sum += D2->values[o][n] * W->values[o][n]; } for (i = 0; i <= ann->layers[w]->n; i++) { I = ann->layers[w]->neurons[i]; D->values[i][o] *= acc * sum; M->values[i][o] *= annI->beta1; M->values[i][o] += (1.0 - annI->beta1) * D->values[i][o] * I->value; V->values[i][o] *= annI->beta2; V->values[i][o] += (1.0 - annI->beta2) * D->values[i][o] * D->values[i][o] * I->value * I->value; } } D2 = D; } // update weights for (w = 0; w < ann->n-1; w++) { W = ann->weights[w]; M = annI->first[w]; V = annI->second[w]; for (i = 0; i <= W->inputs; i++) { for (o = 0; o < W->outputs; o++) { m = M->values[i][o] / (annI->timestep < 100? (1.0 - pow(annI->beta1, annI->timestep)): 1.0); v = V->values[i][o] / (annI->timestep < 10000? (1.0 - pow(annI->beta2, annI->timestep)): 1.0); W->values[i][o] += (m / (sqrt(v) + annI->epsilon)) * annI->rate; } } } free(error); return ret; } double anntrain_adamax(Ann *ann, double *inputs, double *outputs) { double *error = annrun(ann, inputs); double ret = 0.0; int noutputs = ann->layers[ann->n-1]->n; double acc, sum, m, v; int o, i, w, n; Neuron *O, *I; Weights *W, *D, *D2, *M, *V; Adam *annI; if (ann->internal == 0) adaminit(ann); annI = ann->internal; annI->rate = 0.002; annI->timestep++; for (o = 0; o < noutputs; o++) { // error = outputs[o] - result error[o] -= outputs[o]; error[o] = -error[o]; ret += pow(error[o], 2.0) * 0.5; } D = ann->deltas[ann->n-2]; weightsinitdoubles(D, error); for (i = 0; i < (ann->n-2); i++) { D = ann->deltas[i]; weightsinitdouble(D, 1.0); } // backpropagate MSE D2 = ann->deltas[ann->n-2]; for (w = ann->n-2; w >= 0; w--) { D = ann->deltas[w]; M = annI->first[w]; V = annI->second[w]; for (o = 0; o < ann->layers[w+1]->n; o++) { O = ann->layers[w+1]->neurons[o]; acc = O->gradient(O) * O->steepness; sum = 1.0; if (D2 != D) { W = ann->weights[w+1]; sum = 0.0; #pragma omp parallel for reduction (+:sum) for (n = 0; n < D2->outputs; n++) sum += D2->values[o][n] * W->values[o][n]; } for (i = 0; i <= ann->layers[w]->n; i++) { I = ann->layers[w]->neurons[i]; D->values[i][o] *= acc * sum; M->values[i][o] *= annI->beta1; M->values[i][o] += (1.0 - annI->beta1) * D->values[i][o] * I->value; V->values[i][o] = fmax(V->values[i][o] * annI->beta2, fabs(D->values[i][o] * I->value)); } } D2 = D; } // update weights for (w = 0; w < ann->n-1; w++) { W = ann->weights[w]; M = annI->first[w]; V = annI->second[w]; for (i = 0; i <= W->inputs; i++) { for (o = 0; o < W->outputs; o++) { m = M->values[i][o]; v = V->values[i][o]; W->values[i][o] += (annI->rate/(1.0 - (annI->timestep < 100? pow(annI->beta1, annI->timestep): 0.0))) * (m/v); } } } free(error); return ret; } int saveann(char *filename, Ann *ann) { Weights *W; int i, j, k; int fd = open(filename, O_WRONLY|O_CREAT); if (fd < 0) { perror("create"); return -1; } dprintf(fd, "%d\n", ann->n); for (i = 0; i < ann->n; i++) dprintf(fd, "%d\n", ann->layers[i]->n); for (i = 0; i < (ann->n - 1); i++) { W = ann->weights[i]; for (j = 0; j <= W->inputs; j++) for (k = 0; k < W->outputs; k++) dprintf(fd, "%f\n", W->values[j][k]); } close(fd); return 0; } char *retline = nil; char* readline(int fd) { static int length; static int offset; char *epos; int r; if (retline == nil) { length = 0x1000; offset = 0; retline = malloc(length); retline[offset] = '\0'; } r = strlen(retline); if (r > 0) { r++; memmove(retline, &retline[r], length - r); length -= r; offset = strlen(retline); } if (length < 0x1000) { retline = realloc(retline, length + 0x1000); length += 0x1000; } do { epos = strchr(retline, '\n'); if (epos != nil) { *epos = '\0'; return retline; } r = read(fd, &retline[offset], length - offset - 1); if (r < 0) { perror("read"); exits("read"); } if (r > 0) { offset += r; retline[offset] = '\0'; length += r; retline = realloc(retline, length); } } while(r != 0); return nil; } char* sreadline(int fd) { char *ret = readline(fd); if (ret == nil) { dprintf(2, "error: early end of file\n"); exits("eof"); } return ret; } Ann* loadann(char *filename) { Weights *W; Ann *ann = nil; char *buf; int i, j, k; int num_layers, *layers; int fd = open(filename, O_RDONLY); if (fd < 0) { perror("open"); return ann; } buf = sreadline(fd); num_layers = atoi(buf); if (num_layers < 2) { dprintf(2, "num_layers < 2\n"); return ann; } layers = calloc(num_layers, sizeof(int)); for (i = 0; i < num_layers; i++) { buf = sreadline(fd); layers[i] = atoi(buf); } ann = anncreatev(num_layers, layers); for (i = 0; i < (ann->n - 1); i++) { W = ann->weights[i]; for (j = 0; j <= W->inputs; j++) for (k = 0; k < W->outputs; k++) { buf = sreadline(fd); W->values[j][k] = atof(buf); } } free(retline); retline = nil; close(fd); return ann; } void usage(char **argv) { dprintf(2, "usage: %s [-train] filename [num_layers num_input_layer ... num_output_layer]\n", argv[0]); exits("usage"); } int main(int argc, char **argv) { Ann *ann; char *filename; int train; int num_layers = 0; int *layers = nil; int i; char *line; double *input; double *output = nil; double *runoutput; int ninput; int noutput; int offset; double f; int trainline; int nline; struct stat statbuf; train = 0; if (argc < 2) usage(argv); filename = argv[1]; if (argv[1][0] == '-' && argv[1][1] == 't') { if (argc < 3) usage(argv); train = 1; filename = argv[2]; } ann = nil; if(stat(filename, &statbuf) == 0) { ann = loadann(filename); if (ann == nil) exits("loadann"); } if (argc >= (train + 3)) { num_layers = atoi(argv[train + 2]); if (num_layers < 2 || argc != (train + 3 + num_layers)) usage(argv); layers = calloc(num_layers, sizeof(int)); for (i = 0; i < num_layers; i++) layers[i] = atoi(argv[train + 3 + i]); } if (num_layers > 0) { if (ann != nil) { if (ann->n != num_layers) { dprintf(2, "num_layers: %d != %d\n", ann->n, num_layers); exits("num_layers"); } for (i = 0; i < num_layers; i++) { if (layers[i] != ann->layers[i]->n) { dprintf(2, "num_layer_%d: %d != %d\n", i, layers[i], ann->layers[i]->n); exits("num_layer"); } } } else { ann = anncreatev(num_layers, layers); if (ann == nil) exits("anncreatev"); } } if (ann == nil) { dprintf(2, "file not found: %s\n", filename); exits("file not found"); } ninput = ann->layers[0]->n; noutput = ann->layers[ann->n - 1]->n; input = calloc(ninput, sizeof(double)); if (train == 1) output = calloc(noutput, sizeof(double)); trainline = 0; nline = ninput; do { int i = 0; while ((line = readline(0)) != nil) { do { if (strlen(line) == 0) break; while(isspace(*line)) line++; if (strlen(line) == 0) break; offset = 0; while (isdigit(line[offset]) || line[offset] == '.' || line[offset] == '-') offset++; if (!isspace(line[offset]) && line[offset] != '\0') { dprintf(2, "input error: %s\n", line); exits("input"); } f = atof(line); if (trainline == 0) { input[i] = f; i++; } else { output[i] = f; i++; } line = &line[offset]; while(isspace(*line)) line++; } while(i < nline && strlen(line) > 0); if (i == nline) { if (trainline == 0) { runoutput = annrun(ann, input); for (i = 0; i < noutput; i++) /* if (runoutput[i] == 0.0) printf("0%c", (i == (noutput-1))? '\n': ' '); else if (runoutput[i] == 1.0) printf("1%c", (i == (noutput-1))? '\n': ' '); else */ printf("%f%c", runoutput[i], (i == (noutput-1))? '\n': ' '); free(runoutput); } if (train == 1) { if (trainline == 0) { trainline = 1; nline = noutput; } else { anntrain(ann, input, output); trainline = 0; nline = ninput; } } i = 0; } } } while(line != nil); if (saveann(filename, ann) != 0) exits("saveann"); return 0; }